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Abstract. We study the logistic equation modified by a periodic time dependence. The
perturbation introduces bifurcation delays which can be calculated explicitly and we qualitatively
explain how the bifurcation diagram deforms as the perturbation is increased.

1. Introduction

The logistic equationxn+1 = λxn(1 − xn) has been used for almost 20 years as a tool for
investigating deterministic chaos in dynamical systems; [6] has a good account.

Somewhat more tenuously, the logistic equation is presumed to model single species
population dynamics under the assumption that generations do not overlap [8]. Once the
ecological rationale for using the logistic equation is accepted, various modifications suggest
themselves, for example to systems consisting of more than one species with various modes
of interaction [6, 10]. Another approach is to suggest that the species reproduces more than
once a year and that its intrinsic fertility rateλ is season-dependent, i.e. thatλ ≡ λn, a
periodic function ofn. The simplest such case would be when it has period two, so that
we have

xn+1 = (λ + (−1)nε)xn(1 − xn). (1.1)

This is the equation we study in this note. Without loss of generality we takeε > 0.
Time-dependent fertility rates have been considered previously, for example, by [7, 1, 3]. In
[7] the parameterλ is a monotone increasing function ofn (which has no obvious biological
justification); in [1] the parameter is subjected to both sweep and noise. In [3] addition
of white noise to the right-hand side of the logistic equation is considered; this also does
not admit a biological interpretation. We also mention [11], where influence of seasonal
periodicity on predator–prey equations is studied, mainly by numerical means.

Surprisingly, the simple equation (1.1) still has much to offer. In particular, it exhibits
bifurcation delays which can be quantified exactly, coexistence of stable attractors and
attractor crises. In our opinion, the influence ofε 6= 0 on the bifurcation scenario is not at
all obvious, and that is justification enough for studying it.

2. Structure of the initial bifurcations

First of all note that apart fromx = 0, (1.1) has no stationary points. The solutionx = 0
loses stability whenλ2 − ε2 = 1. If λ + ε > 4, almost all points map sooner or later
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out of the interval, so that in order to have any non-trivial dynamics, we must assume that
4 − ε >

√
1 + ε2, that is, thatε < 15/8.

It makes sense to assume initially thatε is very small. In short, the influence ofε 6= 0
small on the first two bifurcations in the period doubling cascade is very different. Instead
of the first pitchfork we have two-fold (tangent) bifurcations. The result is that, unlike the
bifurcation from a stable fixed point to a stable 2-cycle as in the logistic equation, we have
coexistence of two stable 2-cycles after the fold bifurcation (coexistence of stable attractors
is impossible for the logistic equation). The second pitchfork bifurcation splits into two,
one for each 2-cycle. Thus, instead of the usual Sharkovskii sequence 17→ 2 7→ 4 7→ . . .,
we have 27→ 2 × 2 7→ 2 × 4 7→ . . ., where× stands for coexistence of stable cycles.

We will show analytically that this indeed is the case. The demonstration also indicates
how one would expect the bifurcation diagrams to deform asε grows.

To understand the bifurcations, we need the equivalent of the twice-iterated map of the
logistic equation. Obviously, there are two such maps in this case. Thus, if

f1(x) ≡ (λ + ε)x(1 − x) and f2(x) ≡ (λ − ε)x(1 − x)

we can definef12(x) ≡ f2(f1(x)) andf21(x) ≡ f1(f2(x)). The chain rule tells us that their
bifurcations occur at the same values of parameters. More precisely, ifx0 is a fixed point
of f21, thenf2(x0) is a fixed point off12(x). Furthermore,f ′

21(x0) = f12(f
′
2(x0)). To see

this, note that

f ′
12(x)|x=f2(x0) = f ′

2(f1(x))f ′
1(x)|x=f2(x0) = f ′

2(x)f ′
1(f2(x))|x=x0 = f ′

21(x)|x=x0.

Therefore it suffices to consider the bifurcations of one of them, sayf12(x). We are
particularly interested in theε-dependence of the values ofλ for which various bifurcations
occur.

Before that, however, we can apply some powerful theorems to prove results concerning
coexistence of attracting solutions and basins of attraction for (1.1). Let us consider the
mapf21. Thenf ′

21(x) = f ′
1(f2(x))f ′

2(x) and so ifλ−ε < 2 the only critical point isx = 1
2,

otherwise there are two more critical points given byx = f −1
2 ( 1

2). It is easy to check that
each of these critical points is non-flat, that is at least one derivative is non-zero at each of
these points. In [4] it is proved that iff : I → I is a C2 map with non-flat critical points
thenf has no wandering intervals. Thusf21 (and hencef12) has no wandering intervals.
In [4] the authors also prove a generalization of Singer’s theorem: iff as above isC3, has
no wandering intervals, and has a negative Schwartzian derivative then each attractor off

has a critical point or a boundary point in its basin of attraction. The functionf21 has a
negative Schwartzian derivative since bothf1 andf2 have this property, which is conserved
under composition and so the conditions hold.

The boundary points 0 and 1 both map into 0 and forλ − ε > 2 both the critical points
given byx = f −1

2 ( 1
2) map tof1(

1
2). Therefore we have the result thatf21 (and therefore

f12) has precisely one attractor forλ − ε < 2 and at most two attractors otherwise (apart
from possibly the point 0). Also, all the attractors can be found by iterating the pointx = 1

2
from n even andn odd.

2.1. The tangent bifurcation

At the first tangent bifurcation we must have simultaneously

f12(x) = x and f ′
12(x) = 1.

This is a system of two polynomial equations inx, λ and ε. As we are not interested in
the value ofx for which the bifurcation occurs, we eliminatex from the equations using
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resultants (Gr̈obner bases could be used as well). The computation (this and all other
computations were performed using MAPLE V [2]) of the resultant of two polynomials
with respect tox, leads after factorization and picking the correct factor, to

r1(λ, ε) = ε4 + 8ε2λ − 18ε2 − 2λ2ε2 + 18λ2 − 8λ3 + λ4 − 27 = 0.

This is the relation between the value ofλ, λt (ε) andε at the tangent bifurcation. It has to
be solved numerically for values ofε in an interval to be discussed later. The expression
for r1(λ, ε) can be further simplified by noting thatλt (0) = 3 (when ε = 0 the two
tangent bifurcations collide to give the first pitchfork of the logistic equation), so on setting
λ = µ + 3, we have

ε4 − 4ε2µ − 12ε2 − 2ε2µ2 + 4µ3 + µ4 = 0.

For small values ofε we can use the Newton polygon procedure to come up with the
asymptotic expansion

λt (ε) = 3 + 31/3ε2/3 + O(ε4/3).

Note that we have here a bifurcation delay due to the perturbation. It is natural to try to
understand for what value ofε the maximal bifurcation delay is achieved.

2.2. The pitchfork bifurcations

To answer that question, we must consider what happens to the second pitchfork bifurcation
of the logistic equation under a period two perturbation. Again, the answer is furnished by

Figure 1. The functionsλ1
p(ε) (full curve), λ2

p(ε) (broken curve), andλt (ε) (dotted curve).
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Figure 2. Three types of bifurcation diagrams. (a) ε = 0.08; (b) ε = 0.2, (c) ε = 0.38.
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Figure 2. (Continued.)

f12(x). At a pitchfork bifurcation we have

f12(x) = x and f ′
12(x) = −1.

Proceeding as before, the resultant of the two equations with respect tox is

r2(λ, ε) = −125− 85ε2 − 15ε4 + ε6 + 24ε2λ + 85λ2 + 30λ2ε2 − 3λ2ε4 − 24λ3

−16λ3ε2 − 15λ4 + 3λ4ε2 + 8λ5 − λ6 = 0.

This then is the relation betweenλp(ε), the value ofλ at which a 2-cycle loses stability
to a 4-cycle. Note that at least for small enoughε there are two such bifurcations: one
from the original period-2 solution (which just reflects the fact that the equation (1.1) is
periodic inn with period 2) and one from the 2-cycle generated by the tangent bifurcation
discussed above. Let us denote the values ofλ for which these bifurcations occur byλ1

p(ε)

andλ2
p(ε). Obviously,λ1

p(0) = λ2
p(0) = 1 + √

6. r2(λ, ε) is too cumbersome to be further
processed analytically and is solved numerically. We present the graphs ofλ1

p(ε) , λ2
p(ε)

and λt (ε) in figure 1. (All the figures in this paper have been generated using MATLAB
[9].)

Note thatλt (ε) is a monotone increasing function ofε, as can be seen from implicitly
differentiatingr1(λ(ε), ε) = 0 in ε. From the numerics,λ2

p(ε) is also monotone increasing,
while λ1

p(ε) is monotone decreasing. In particular, forε > 0.348 611 91, which solves
r2(3, ε) = 0 we have thatλ1

p < 3, so instead of having a bifurcation delay, we have, so to
speak, ‘premature bifurcation’.

Now it becomes clear that bifurcation delay is maximal whenλ1
p(ε) = λt (ε). To obtain

that value ofε, we take the resultant ofr1(λ, ε) and r2(λ, ε) with respect toλ. The result
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is very simple:

20 480− 1 982 464ε2 = 0

which we solve forε to obtain the maximal delay value,εd = 0.101 6394.
In addition, we will have coexistence of two attractors as long asλt (ε) < 4 − ε. To

obtain that value we simply solver1(4 − ε, ε) = 0. This collapses to 5− 16ε = 0, which
gives us the maximal value for coexistence,εc = 0.3125.

3. Bifurcation diagrams

Thus it would appear from the above analysis of the (at most three) initial bifurcations that
the bifurcation diagrams of (1.1) fall into three classes: (a) 0< ε < εd ; (a) εd < ε < εc;
(c) ε > εc. Typical examples are shown in figure 2. We make the obvious point that due to
the non-autonomous nature of the equation, branches can intersect, both if they belong to
the same attractor (in which case the trajectory waits for a unit of time at the intersection
point) and if they belong to different attractors; this means that trajectory of the intersection
point depends on whetherf1 or f2 is to be applied to it.

Finally, we also draw the attention of the reader to attractor crises and reappearance.
This obviously has to do with the collision of a chaotic attractor with an unstable invariant
set [5]. An example is shown in figure 2(a).
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